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AFIT/GAP/ENP/06-02 

Abstract 

 
Dielectric Barrier Discharge (DBD) type devices, when used as plasma actuators, 

have shown significant promise for use in many aeronautical applications.  

Experimentally, DBD actuator devices have been shown to induce motion in initially still 

air, and to cause re-attachment of air flow over a wing surface at a high angle of attack. 

This thesis explores the numerical simulation of the DBD device in both a 1D and 2D 

environment.  Using well established fluid equation techniques, along with the 

appropriate approximations for the regime under which these devices will be operating, 

computational results for various conditions and geometries are explored.  In order to 

validate the code, results are compared to analytic or experimental data whenever 

possible, or matched with other similar numeric simulations to help establish the 

accuracy of the code.  Solutions to Poisson’s equation for the potential, electron and ion 

continuity equations, and the electron energy equation are solved semi-implicitly in a 

sequential manner.  Each of the governing equations is solved by casting them onto a 

tridiagonal grid, and using the computationally efficient Thomas algorithm to solve 1D 

regions in a single iteration.  The Scharfetter-Gummel flux discretization method is used 

to add stability to the code when transitioning from a field to diffusion dominated region 

or vice versa.  Estimates for the ionization and recombination rates and for the transport 

coefficients of the background gas are calculated as a function of the local average 

electron energy, and updated for every calculation point in the domain on the completion 

of the solution to the electron energy equation.  Results are then recorded and used as a 
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starting point for the next time step.  The basis for the 2D geometry relies heavily on its 

1D counterpart, but with the inclusion of a Gauss-Seidel line iterative method to solve 

Poisson’s equation, and a superposition method for keeping track of ion, electron, and 

electron energy fluxes.  Appropriate boundary conditions are implemented to close the 

computational region at the boundaries, take into account any space charge present in the 

computational area, and keep track of surface charge buildup on any dielectric surfaces if 

present.  In the 2D geometry, momentum transfer to the background gas could be 

estimated by tracking the charge particle movement and their interactions with the neutral 

background gas; and the effects of various electrode placements, driving potentials, and 

driving frequencies (if an AC potential source is present) could be used to further the 

understanding of DBD operation.  Results from the 1D and 2D code are presented, as 

well as limitations of the current work and proposed future refinements. 
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COMPUTATIONAL MODELING OF THE DIELECTRIC BARRIER 

DISCHARGE (DBD) DEVICE FOR AERONAUTICAL APPLICATIONS 

 

 

I.  Introduction 

Background and Importance of the Dielectric Barrier Discharge  

The Dielectric Barrier Discharge (DBD) device has been put to use since 1857 

when Werner von Siemens used to produce ozone at atmospheric pressures from the 

oxygen in air.  Today, DBD devices are still in use as ozone generators, but have found 

many more uses in industry, science, and military applications.  Such uses include plasma 

television displays, pumps for CO2 lasers, toxic gas decomposition for pollution control, 

and the modification of air flow over a surface (14:1819).  The Fig 1 shows the nominal 

flow control set-up for the DBD device as described by Font et al (8:1). 

 

Figure 1. DBD device configuration for aeronautical application (8:1). 
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This technology is of particular interest to the United States military, specifically 

the Air Force, to improve the effectiveness of their aircraft and weapon systems.  DBD 

devices have been shown to induce air flow over a surface, reattach flow to an airfoil at 

high angles of attack, such as shown in Fig 2; and show promise of eventually replacing 

flaps and ailerons on aircraft (DBD devices are commonly called plasma actuators when 

referring to flow control).  By eliminating the hydraulics on aircraft and replacing them 

with electrical wires, plasma actuators would open the door to building stronger, lighter, 

more robust airfoils, with faster maneuvering response time and fewer moving parts to 

malfunction.  This is especially advantageous when considering Unmanned Combat 

Aerial Vehicles (UCAVs), and pushing the performance envelope above and beyond 

what human physiology can withstand.   

 

Figure 2. Boundary layer flow re-attachment caused by a DBD device (17:2124). 

The maturation of DBD actuator technology by the United States represents the 

next generation of design enhancements that will continue to keep Air Force jets flying 

higher, faster, and farther with the potential of being stronger, lighter, and more highly 

maneuverable.  The development of robust and accurate computational code for 
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simulating the outcome of these ongoing experiments would represent a great step toward 

understanding their behavior more completely.  Replacing the experimental 

configurations that need to be built and tested in a laboratory with a numeric simulation, 

would result in great saving in time and resources, and could possibly lead to faster 

development.  In short, an effective and efficient numerical code would help mature and 

deploy the DBD actuator technology more quickly than traditional methods and also 

result in a significant costs savings to the Air Force. 

The focus of this thesis will be to provide a greater understanding of the discharge 

dynamics, through observing momentum and energy transfer in the plasma using fluid 

dynamics and computational methods.  Eventually, the availability of accurate modeling 

software that is grounded in theory will allow engineers, once left with only trial and 

error, to optimize their designs in a cost effective way.  A robust and accurate 

computational tool would help predict the energy and momentum imparted to the 

surrounding airflow via the DBD actuator for different device configurations and 

operating parameters.  This will provide the Air Force with a low cost, quick turn around, 

effective way of designing their next generation of aerial vehicles. 

DBD Device Configuration 

A DBD device can be made from any configuration of electrodes, separated by a 

dielectric barrier, operated under an alternating current (AC) configuration, as opposed to 

direct current (DC).  The devices are commonly used in the glow discharge region of the 

plasma spectrum, where the number density of positively and negatively charge species 
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are roughly equivalent, and a neutral gas many orders of magnitude greater in density is 

present.  This background pressure can range from a few Torr to 1 Atmosphere (ATM) 

(20:8).  Initially, the applied potential difference on the electrodes must be great enough 

to initiate gas breakdown.  While operation is possible for a short time using a DC 

potential, the discharge will eventually extinguish due to a buildup of charge on the 

dielectric barrier as notionally seen in Fig 3.  This buildup effectively reduces the applied 

potential across the gap between the electrodes and the discharge is extinguished.  This 

buildup may play a crucial role in the continued operation and characterization of these 

devices under AC operating conditions.  It might act to seed the ionization of the neutral 

gas on the reverse cycle of the potential as shown below in Fig 3.  This seeding could in 

fact be the mechanism by which an asymmetric force on the neutral flow is coupled to the 

background gas during operation (9:9).  For this project, the charge will be considered 

trapped on the dielectric surface and only secondary emission from exposed electrode 

surfaces due to ion impact will be characterized. 

 

Figure 3. Charge build-up on a DBD dielectric under AC operating conditions (7:2). 
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The dielectric barrier can be either an insulating coating on the anode or cathode 

of the device, or a layer of insulating material placed somewhere in between.  A variety 

of DBD configurations exist, some of which are shown in Fig 4.  These various 

arrangements stem from the multiple uses of DBD type devices for industrial 

applications, plasma T.V. display light generation, and aeronautical flow control 

purposes.  It should be noted that while these DBD devices have found widespread usage 

in the modern world because of their proven operational capability, the physics behind 

their operation and plasma dynamics involved are not well understood.  Therefore, this 

thesis will focus on characterizing the mechanisms involved in DBD operations through 

the use of macroscopic fluid equations.  The numeric simulation will be done for both 1D 

and 2D geometries. 

 

Figure 4. Various geometrical arrangements for the DBD device (14:1820). 
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II. Computational Modeling 

Introduction 

Tracking the position of all the individual particles in the DBD system, as well as 

their ancillary velocity vectors for any system with more than a few constituents is 

problematic, if not impossible.  Of course, the only exact solution is to track each 

constituent on a microscopic scale; however, memory requirements, as well as 

computational time limitations force an approximate solution where only the macroscopic 

parameters of the system are accounted for and varied.  In making a few physically 

reasonable approximations, the fluid equations governing the DBD system can be derived 

from the Boltzmann equation, allowing for numeric modeling of different conditions and 

configurations in a reasonable amount of time without losing too much information about 

the physical reality of the model.  For this thesis, macroscopic fluid type equations will 

be used to track the location and movement of the electrons and positively charged ions 

in the system, as well as the average local electron energy density at each spatially 

discretized location. 

Moments of the Boltzmann Equation 

The Boltzmann equation is defined by: 

oltzmann v
collision

f fB v f a f
t t

δ
δ

∂ ⎛ ⎞≡ + ⋅ ∇ + ⋅ ∇ = ⎜ ⎟∂ ⎝ ⎠
  .                   (1) 

This equation represents the temporal evolution of the distribution function, f, (or the 

probability of finding a plasma species with a particular position and velocity ( v )).  The 
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first term represents the change in the distribution function over time; this is ultimately 

what will be solved for to give a solution over all time to a system given some set of 

initial conditions.  The second term describes how the distribution changes in space, or 

configuration coordinates, as the particles move through the system with a certain 

velocity and direction.  The third shows how the species distribution is changing due to 

external forces acting to accelerate the charged particles.  And finally, the term on the 

right hand side represents collisional interactions among the plasma species as time 

passes, such as ionization and recombination, and how these affect the total distribution 

of the system.  The zeroeth and second moments of the Boltzmann equation, are defined 

by: 

0 o ltzm a n nM o m en t B d v≡  ∫                                              (2) 

and 

2
1
2

s
o ltzm annM om ent B m vv dv≡  ∫                                       (3) 

respectively.  The integrals are done over all space with respect to the velocity 

coordinates.  These two moments, along with the solution to the first moment, also called 

the momentum equation, which will be approximated using the Scharfetter-Gummel flux 

discretization technique described later, can be solved to yield the continuity and energy 

equations for a particular species, with m designating the mass of the species.  The 

species (designated by a superscript s) included in this thesis will be limited to singly 

positively charged ions and electrons only.  A brief development of the continuity 
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equation will be looked at next, but results for the energy equation will only be stated.  

Full derivations can be found in almost any introductory plasma physics course text 

(6:19-26). 

 By simplifying each term of the zeroeth moment of the Boltzmann equation 

defined above, the continuity equation can be shown to develop as follows (19): 

Term 1 Term 2 Term 3 Term 4

v v
collision collision

f f f fv f a f dv dv v f dv a f dv dv
t t t t

δ δ
δ δ

⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞+ ⋅∇ + ⋅∇ =  =  + ⋅∇  + ⋅∇  =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫ ∫

   (4) 

Term 1 reduces to: 

f ndv f dv
t t t

∂ ∂ ∂
=  =

∂ ∂ ∂∫ ∫                                             (5) 

because n f dv=  ∫ , is the number density of the species. 

Term 2 reduces to: 

v f dv f dv v f dv v nv⋅∇  =   ∇ ⋅  = ∇ ⋅   = ∇ ⋅ = ∇ ⋅ Γ∫ ∫ ∫           (6) 

recognizing that the number density times the velocity is defined as the species flux ( Γ ) 

into or out of any particular volume element. 

Term 3 reduces to: 
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ˆ 0v v
Surface

a f dv a f dv a f n dS⋅∇  = ∇ ⋅   =  ⋅  =∫ ∫ ∫                           (7) 

by using the divergence theorem, and recognizing that any distribution goes to zero as the 

surface used in the integral approaches infinity. 

Finally, term 4 reduces to: 

collisional collisional collisional

f f ndv dv S L
t t t

δ δ δ
δ δ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫                        (8) 

resulting in a source and loss term determined by the collisional interaction of the 

particles in the system. 

The resulting continuity equation can be rewritten from Eq (4) as: 

n S L
t

∂
+ ∇⋅Γ = −

∂
.                                                 (9) 

If ionization and recombination of the positively charged ions and electrons are 

the only source and loss terms considered for this project, then the S L−  term above can 

be rewritten as: 

e e iS L n n nν β− = −                                              (10) 

with ν representing the electron impact ionization frequency on the neutral gas, and the 

recombination coefficient represented by β.  The local temporal change of the number 
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density and the divergence of the flux in 1D, along the X-axis in this case, can be recast 

in a finite difference form as: 

, , 1s t s tn n n
t t

−∂ −
=

∂ Δ
                                                 (11) 

and 

right left

x x
Γ − Γ∂

∇ ⋅Γ = ⋅Γ =
∂ Δ

                                        (12) 

respectively. The superscript t refers to a specific point in time.  The divergence term 

reduction above is commonly referred to as a three-point formula, even though the third 

point does not appear in the equation (4:171-172).  This 1D discretization is appropriate 

for this project since particle fluxes into or out of a local volume will only be considered 

along one specific axis at a time.  Note that the flux characters retain their vector quality, 

even when reduced to 1D in the example above; this indicates the ability of the flux to be 

directed in either a positive or negative sense. 

Finally, all terms from the previous development can be combined to yield the 1D 

continuity equation for this project: 

, ,, , 1
, 1 , 1 , 1

s t s ts t s t
right left e t e t i tn n n n n

t x
ν β

−
− − −Γ − Γ−

+ = −
Δ Δ

.                     (13) 

The electron energy equation takes on a similar form: 
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, ,, , , 1 , 1
, , 15

3

e e e en u t n u te t e t e t e t
right left e t e t

L
n u n u q E Nk n

t x

− −
−Γ − Γ−

+ = − Γ ⋅ −
Δ Δ

 .              (14) 

e en u  designates the electron energy density.  The first term on the right hand side is a 

source due to Joule heating, with q as the unsigned charge on an electron; and the second 

term is a collisional power loss associated with electron-neutral collisions.  If the units of 

energy are specified to be in eV instead of the S.I. unit of Joules, then the q in Eq (14) 

above is divided out in the conversion, and everything else remains the same.  Neutral 

number density is determined by specifying the pressure (P) at which the simulation will 

be running, and converting via: 

b

PN
k T

= ,                                                         (15) 

with T as the temperature of the system and bk  as Boltzmann’s constant. 

Discretization of Equations and the Scharfetter-Gummel technique 

With the fluid equations specified, the next step is to approximately describe them 

for the discrete points in space that make up the computational domain.  In a 2D 

geometry, but considering only the change in density due to movement of the species 

along the X-axis in this example, the electron and ion continuity equations can be written 

as: 

1 1
2 2

, ,, , 1
, ,, , , 1 , 1 , 1

, , ,

s t s ts t s t
x y x yx y x y e t e t i t

x y x y x y

n n
n n n

t x
ν β

−
+ − − − −

Γ − Γ−
+ = −

Δ Δ .                 (16) 
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While the electron energy equation can be written as: 

1 1
2 2

, ,, , , 1 , 1
, ,, , , , , , 1

, ,
5
3

e e e en u t n u te t e t e t e t
x y x yx y x y x y x y e t e t

x y L x y

n u n u
E Nk n

t x

− −
+ − −

Γ − Γ−
+ = −Γ ⋅ −

Δ Δ
.     (17) 

with the subscripts now designating a particular position in 2D space.  This project will 

set the distance between evaluation points to be equal, that is x yΔ = Δ .  The final form of 

these equations suggests that for given initial conditions the evolution of the charged 

species densities and energy density can be solved for any later time in a sequential 

manner.  Solving then for the current time step, these two equations can be rewritten as: 

1 1
2 2

,

, ,
, ,, , , , 1

, , ,( )
x y

s t s t
x y x ys t s t s t s t

x y x y x yn S L t n
x

+ − −
Γ − Γ

= − − Δ +
Δ

                      (18) 

and 

1 1
2 2

,

, ,
, ,, , , , , 1 , 1

, , , , ,
5( )
3

e e e e

e e e e

x y

n u t n u t
x y x ye t e t n u t n u t e t e t

x y x y x y x y x yn u S L t n u
x

+ − − −
Γ − Γ

= − − Δ +
Δ

.       (19) 

Having described the source and loss terms earlier, the flux terms in the above 

equations will now be described using the Scharfetter-Gummel flux discretization 

scheme.  This flux, which appears in both the continuity and energy equations, is 

obtained from the solution of the first moment of Boltzmann’s equation by applying the 

drift and diffusion approximation (12:3).  By using this flux description for the continuity 

and energy equations, computational stability is added to the model, allowing for 

relatively coarser grid point spacing.  This is a result of the ability of the Scharfetter-
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Gummel technique to smooth the transition between field driven and diffusion dominated 

regions (12:4).  This smoothness is achieved by the built-in ability of the flux 

representation to account for the direction of the electric field at any given point (up-

winding), relate information about the species densities on either side of that point, and 

appropriately weight the contributions of each term when describing the flux into or out 

of the point.  The up-winding effect of the Scharfetter-Gummel technique is not easily 

seen at first, and a more in-depth example describing the behavior under limiting 

conditions can be found in the work by Hilbun (13:9-10).  The flux terms for the 

continuity equations are: 

1 1
2 2

1
2

1
2

, , 1 , , , 1 ,
, , 1, 1,, ,,

, ,
,

exp( )
exp( 1)

s t s t s t s t s t s t
x y x y x y x yx y x ys t

x y s t
x y

n D Z n D Z
x Z

− −
+ ++ +

+
+

⎛ ⎞⎛ ⎞−
Γ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ −⎝ ⎠⎝ ⎠

                  (20) 

and 

1 1
2 2

1
2

1
2

, , 1 , , , 1 ,
1, 1, , ,, ,,

, ,
,

exp( )
exp( 1)

s t s t s t s t s t s t
x y x y x y x yx y x ys t

x y s t
x y

n D Z n D Z
x Z

− −
− − − −

−
−

⎛ ⎞⎛ ⎞−
Γ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ −⎝ ⎠⎝ ⎠

.                 (21) 

Where the Z terms are defined as:  

1
2

1
2

1
2

, 1
,,

1, ,, , 1
,

[ ] ( )
s t
x ys t

x y x yx y s t
x y

Z sign s
D
μ

φ φ
−

+
++ −

+

= − −                                  (22) 

and 

1
2

1
2

1
2

, 1
,,

, 1,, , 1
,

[ ] ( )
s t
x ys t

x y x yx y s t
x y

Z sign s
D
μ

φ φ
−

−
−− −

−

= − −                                   (23) 
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with sign[s] taking the value of +1 for the positive ions and -1 for electrons.  The φ ’s 

represent the scalar potential at a given grid point, and D and μ  are the diffusion and 

mobility coefficients respectively.  Special limiting if statements were included in the 

computational code, to account for regions where the change in potential was very small 

or zero, or where the change was very large.  This kept the F terms defined below from 

returning as undefined, or as a number greater than the computer could handle due to the 

exponential factors in the terms of Eq (24).  It should be noted that the values of Z, D, and 

µ for the electron energy flux are the same as those appearing in the electron continuity 

equation (i.e. , 1 , 1
, ,

e en u t e t
x y x yZ Z− −= , , 1 , 1

, ,

e en u t e t
x y x yD D− −= , , 1 , 1

, ,

e en u t e t
x y x yμ μ− −= ).  To further reduce the 

equations into a more manageable form, the F1 and F2 terms: 

           

exp( )1[ ]
exp( ) 1

2[ ]
exp( ) 1

Z ZF Z
Z
ZF Z
Z

=  
−

=
−

                                                  (24) 

are introduced.  Shown in the figure below is a plot of these two F functions.            

 

Figure 5. Plot of F1 and F2 as functions of Z. 
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The limit of the F functions for small Z’s in the range of 710−± about zero was set 

to 1 based on L’Hopital’s rule, while the limit for the Z’s that were greater than 150 or 

less than -150 was set equal to Z and 0 for F1 and F2 respectively.  After a little algebra, 

new forms for the flux terms can be shown reduced as: 

1 1
2 2

1
2

, , 1 , , , 1 ,
, , 1, 1,, ,,

,

1[ ] 2[ ]s t s t s t s t s t s t
x y x y x y x yx y x ys t

x y

n D F Z n D F Z
x

− −
+ ++ +

+

−
Γ =

Δ
                   (25) 

and 

1 1
2 2

1
2

, , 1 , , , 1 ,
1, 1, , ,, ,,

,

1[ ] 2[ ]s t s t s t s t s t s t
x y x y x y x yx y x ys t

x y

n D F Z n D F Z
x

− −
− − − −

−

−
Γ =

Δ
.                 (26) 

Finally, substitutions for the previously determined representations for source and 

loss can be made.  The final form of the electron continuity equations in 1D along the X-

axis reduces to: 

( )
( )

( )

1
2

1 1
2 2

1
2

, , 1 ,
1, 1, ,

, 2 , 1 , , 1 ,
, , ,, ,

, , 1 ,
1, 1, ,

, 1 2 , 1 2 , 1 2
, , , ,

1[ ]

( ) 1[ ] 2[ ]

2[ ]

1 1( ) ( ) ( )
2 2

e t e t e t
x y x y x y

e t e t e t e t e t
x y x y x yx y x y

e t e t e t
x y x y x y

e t i t i t
x y x y x y x y

n D F Z t

n x D F Z t D F Z t

n D F Z t

n x n t x n t xν β

−
− − −

− −
+ −

−
+ + +

− − −

− Δ +

Δ + Δ + Δ +

− Δ =

⎛ Δ + Δ Δ − Δ Δ
⎝

⎞
⎜ ⎟

⎠

 .       (27) 

The ion continuity equations in 1D along the X-axis can be re-written as: 



 

16 

( )
( )

( )

1
2

1 1
2 2

1
2

, , 1 ,
1, 1, ,

, 2 , 1 , , 1 ,
, , ,, ,

, , 1 ,
1, 1, ,

, 1 2 , 1 2 , 1 2
, , , ,

1[ ]

( ) 1[ ] 2[ ]

2[ ]

1 1( ) ( ) ( )
2 2

i t i t i t
x y x y x y

i t i t i t i t i t
x y x y x yx y x y

i t i t i t
x y x y x y

i t e t e t
x y x y x y x y

n D F Z t

n x D F Z t D F Z t

n D F Z t

n x n t x n t xν β

−
− − −

− −
+ −

−
+ + +

− − −

− Δ +

Δ + Δ + Δ +

− Δ =

⎛ Δ + Δ Δ − Δ Δ
⎝

⎞
⎜ ⎟

⎠

           (28) 

where the source and loss terms for this project will always depend on the previous 

values of the electron and ion densities to ensure generation or recombination of the 

charged species occurs in pairs, making the numeric code is stable, and not allowing any 

inequality between production and loss.  In a similar manner, the electron energy 

equation in 1D along the X-axis takes on the final form: 

1
2

1 1
2 2

1
2

, , , 1 ,
1, 1, 1, ,

, , 2 , 1 , , 1 ,
, , , ,, ,

, , , 1 ,
1, 1, 1, ,

,
,

5 1[ ]
3

5 5( ) 1[ ] 2[ ]
3 3

5 2[ ]
3

e t e t e t e t
x y x y x y x y

e t e t e t e t e t e t
x y x y x y x yx y x y

e t e t e t e t
x y x y x y x y

e t
x y

n u D F Z t

n u x D F Z t D F Z t

n u D F Z t

n

−
− − − −

− −
+ −

−
+ + + +

−

⎛ ⎞− Δ +⎜ ⎟
⎝ ⎠

⎛ ⎞Δ + Δ + Δ +⎜ ⎟
⎝ ⎠

⎛ ⎞− Δ =⎜ ⎟
⎝ ⎠

( )1 , 1 2 2 , 1 2
, , , ,

1( ) ( ) ( ) ( )
2

e t e e t
x y x y x y x y Lu x E t x n k N t x− −Δ − Γ ⋅ Δ Δ − Δ Δ

   (29) 

where the electron flux term, ,
e
x yΓ , at the grid point is the average of the electron flux at 

the current time step of the closest mid-points which is solved for during the solution of 

the electron continuity equation using the Scharfetter-Gummel discretization technique.  

These flux values are determined when the electron continuity equation is solved.   It 

should be recognized that the values of the electron flux and electric field in the energy 
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equation retain their vector nature, indicating that they lie along a particular axis in 2D 

space.  The factor of ½ multiplying the source or loss terms in all the governing equations 

is a manifestation of calculating the source or loss for each volume element in 2D space 

as a superposition of both 1D elements along the two possible axes.  This will be 

elaborated on more in Chapter 3. 

With the three governing equations now reduced into a compact tridiagonal form, 

the evolution of the ion and electron densities and the electron energy from some initial 

condition can now be found, given that appropriate values for the boundary conditions of 

the system and the existing unknowns can be determined. 

Boundary Conditions 

Since the Scharfetter-Gummel flux representation depends on neighboring points 

to determine intermediate values, and this model will assume that the space charge 

density at any surface boundaries is zero, realistic conditions for the fluxes at these 

boundaries need to be defined (2:1379). 

The flux of the electrons at a surface boundary will be defined as: 

, , , , 11
4

e t e t e thermal t i t
boundary adjacent adjacent adjacentn v γ   −Γ = ±  Γ∓                    (30) 

where the plus or minus terms indicates that the thermal flux term is always directed 

towards the surface boundary, and that the secondary emission is directed away from the 

boundary. γ represents the secondary emission coefficient for positive ion impact onto the 
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surface of any exposed electrode.  γ will be set to 0.02 for this project.  ,e thermal t
adjacentv    is the 

value of the thermal velocity of the electrons at the point next to the boundary, expressed 

in terms of the average electron energy at that point: 

, 5 , 14.19 10e thermal t e t
adjacent adjacentv u   −= × .                                      (31) 

The average electron energy, ue, is found by dividing the energy density in the solution of 

the energy equation, by the number density in the solution of the electron continuity 

equation. 

The conditions for the ion flux at the surface boundaries are somewhat different, 

but still give a realistic value over the time scale used because of their much slower 

response to any applied fields and relatively cooler temperature when compared to the 

electrons.  That being said, the movement of the ions is modeled as field driven only at 

the surface boundaries using the Scharfetter-Gummel technique.  To satisfy the condition 

of having only field driven flux, the diffusion dependency of the technique must be 

zeroed.  This is done by temporarily setting the ion density at the surface boundary equal 

to its adjacent grid point.  One final if statement must be incorporated however.  The 

boundary flux must only exist if the electric field is also directed toward the boundary.  

This condition keeps ions from moving out of the region that was temporarily assigned a 

value to zero the diffusion term, but is otherwise modeled as having no charge density.  

The final form of the ion flux at the surface boundary, which can be integrated into the 

previously determined ion continuity equations, is: 
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1 1
2 2

, , , , 1
,

( 1[ ] 2[ ])i t i t i t i t
adjacent adjacentadjacent adjacenti t

adjacent

F Z F Z n D
x

−
± ±−

Γ =
Δ

              (32) 

where the ± term in the Z factor indicates if an adjacent grid point is either to the left or 

the right of the surface boundary in this X-axis example. 

Finally, the electron energy flux into the surface boundary takes on a form very 

similar to that of the electron flux.  It is modeled as: 

, , , ,1
3

e en u t e t e t e thermal t
boundary adjacent adjacent adjacentn u v  Γ = ± .                               (33) 

Any electron energy flux out of the boundary, due to secondary emission, is accounted 

for in the Joule heating term of the energy equation. 

Conditions for non-surface boundaries, for the 2D geometry, are implemented by 

using ghost cells around the computational domain that have the same value for densities 

as their neighboring cells, and where the perpendicular component of the electric field 

has been defined to be zero, so as not to allow any loss in the system.  While the zeroing 

of the perpendicular component of the electric field at the non-surface boundary is not a 

physical reality, it is a good approximation if the size of the domain and distance of the 

boundary is far enough away from the active region of the simulation (11:40). 

BOLSIG Fits for Rate and Transport Coefficients 

With the boundary conditions adequately defined, the values of the transport 

parameters and kinetic rate coefficients in the continuity and energy equations will now 



 

20 

be defined.  The values of , ,
, ,, , and ori t i t

x y x yDβ γ μ     are assumed to be constants that were 

measured experimentally given the material make-up of the system, the type of gas in the 

system, and the pressure of the gas in the system.  Using the Einstein relation to define a 

relationship between , ,
, ,andi t i t

x y x yDμ    , for the positively charged ions in the system, it can 

be shown that: 

,
,
,
,

i t
x y b
i t
x y

D k T
qμ

= .                                                      (34) 

Approximating room temperature for this simulation leaves a value of about 1/40 

for the right hand side of the equation, showing that if one parameter value is known 

from an experimental result, the other can be easily determined. 

 The values of , ,
, , ,, , , ande t e t

x y x y x y LD kμ ν   as a function of local average electron energy 

can be determined by using the BOLSIG Boltzmann equation solver.  This excellent 

freeware tool has proven reliable and accurate, as well as easy to use.  Curve fits of the 

unknown coefficients as a function of average electron energy can be obtained for 

specified gases and mixtures of gases, as well as their dependence on ambient pressure.  

This project uses the BOLSIG results for a pure atmosphere of either Ar or N2.  Two 

representative plots of the numerical results from BOLSIG, as well as their associated fits 

are shown below in Fig 6 and Fig 7 (3). 
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Figure 6. Computational fit for the electron mobility as a function of average energy. 

 

 

Figure 7. Computational fit for the kL coefficient as a function of average energy. 

 In the first graph, the fit obtained from BOLSIG was determined to be accurate 

enough to use for this project, the second was fitted to a more appropriate polynomial to 
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more accurately simulate the discreet BOLSIG results.  These fits were calculated for the 

range 0.0-5.0 eV and were determined to be in good agreement with the calculated values 

in the range 0.3-4.75 eV, therefore upper and lower boundaries were placed on the 

average electron energy, as to not incorrectly describe the rate and transport coefficients 

by using the fits to calculate them in a region were they are not appropriately represented.  

An example of this limiting factor can be seen in the behavior of the fit for the energy 

loss coefficient above where the value of the polynomial fit drops below zero at around 

0.3 eV.   

 The last set of unknowns, potential and electric field values, for all points on the 

computational grid must now be determined in order to arrive at a solution of the 

continuity and electron energy equations.  Since the computational set-up will include 

regions of different permittivity, Gauss’s law in the presence of dielectrics must be used 

to accurately account for any bound charge which might contribute to the polarization of 

the material under an applied electric field (10:175-180).  This law in equations form is: 

fD ρ∇ ⋅ = .                                                      (35) 

D  is the electric displacement vector defined by 0D E Pε≡ + , where 0ε  is the 

permittivity of free space, E  is the electric field in the material, and P  is the dipole 

moment per unit volume.  The vector P  is used to correctly account for the bound charge 

density associated with polarization by an externally applied electric field in a dielectric 

material.  In linear media P , can be further defined as 0 eP Eε χ≡ , allowing for a new 
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equivalent definition of the displacement vector: 0 (1 )eD Eε χ≡ + .  Finally, making the 

substitution 0 (1 )eε ε χ= +  Gauss’s law can be rewritten as: 

fEε ρ∇ ⋅ =                                                     (36) 

where ε  is the permittivity of the material.  Defining this permittivity as a multiple of a 

relative permittivity and the permittivity of free space gives: 

0rε ε ε= .                                                         (37) 

This relative permittivity, rε , also referred to as the relative dielectric constant of the 

material, is well known for many materials through experimental measurement.  One of 

the most common dielectric materials used in the aerospace industry today is that of 

Kapton® tape manufactured by Dupont, with a relative dielectric constant of 4.0; and will 

therefore be the relative dielectric constant chosen to define the permittivity of the 

dielectric region(s) between the anode and cathode in this project. 

 Using the three-point formula to solve for the divergence of the electric field in 

Eq. (36) above, and recalling that the dielectric material being used exhibits linear 

properties, Gauss’s law can be rewritten in 2D as: 

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2, , , , , , , ,

,
x y x y x y x y x y x y x y x y t

x y

E E E E
x y

ε ε ε ε
ρ+ + − − + + − −− −

+ =
Δ Δ

.         (38) 
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The free charge on the right hand side of the equation is: , 1 , 1
, , ,( )t i t e t

x y x y x yq n nρ − −= − .  The 

electric field component in Eq (38) above can be defined in terms of the negative gradient 

of the potential as: 

                                                              E φ≡ −∇ .                                                       (39) 

Therefore, substitutions can be made for the individual components in Gauss’s law as:   

                                                   

1
2

1
2

1
2

1
2

1, ,
,

, 1,
,

, 1 ,
,

, , 1
,

x y x y
x y

x y x y
x y

x y x y
x y

x y x y
x y

E
x

E
x

E
y

E
y

φ φ

φ φ

φ φ

φ φ

+
+

−
−

+
+

−
−

−⎛ ⎞
= −⎜ ⎟Δ⎝ ⎠

−⎛ ⎞
= −⎜ ⎟Δ⎝ ⎠

−⎛ ⎞
= −⎜ ⎟Δ⎝ ⎠

−⎛ ⎞
= −⎜ ⎟Δ⎝ ⎠

.                                              (40) 

Furthermore, using the previously defined assumption for this project that x yΔ = Δ , the 

equation reduces to: 

   1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

2
, 1 , , 1 , 1, 1,, , , , , , , ,( ) ( )x y x y x y x y x y x yx y x y x y x y x y x y x y x yxε φ ε ε ε ε φ ε φ ρ ε φ ε φ− + + −− + − + − + + −− + + + + − = Δ + + . (41) 

Combining like terms, and assuming that the values of ε  are equal over the region of 

interest, leaves the final form of Gauss’s law as: 

                                   
2

,
, 1 , , 1 1, 1,

( )
4 x y

x y x y x y x y x y

xρ
φ φ φ φ φ

ε− + + −

Δ
− + − = + + .                         (42) 
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 However, if the values of ε  vary over the spatially discrete grid, meaning a 

dielectric interface is encountered, Gauss’s law take on the form: 

   1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1
2 2 2 2

, , , ,
, 1 , , 1 , 1, 1,, , , ,2( )

2 2
x y x y x y x y

x y x y x y x y x y x yx y x y x y x y x
ε ε ε ε

ε φ ε ε φ ε φ σ φ φ+ + + − − + − −
− + + −− + − +

+ +⎛ ⎞ ⎛ ⎞
− + + − = Δ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (43) 

This is because the value of fρ  at any of these points for this project is defined as zero, 

the value of ε  at the dielectric interface has been defined as: 

                                                   
1 1 1 1

2 2 2 2
1

2

, ,
, 2

x y x y
x y

ε ε
ε ± + ± −

±

+
= .                                         (44) 

Any accumulated free charge on the dielectric surface has been accounted for by 

substituting , ,x y x y xσ ρ= Δ  into Gauss’s law.  Modeling the dielectric in the system as 

sticky, that is any flux of plasma species incident on the surface adheres and remains at 

the location of incidence and assuming that any neutralization of the charge species by 

recombination takes place instantly at the surface, σ can be defined as the accumulation 

over time of any fluxes incident on the surface.  The surface charge density will be 

calculated using: 

                                             ( )1 1
2 2

1 , 1 , 1
, ,

t t i t e t
x x x y x yq tσ σ − − −

+ += + Γ − Γ Δ                                (45) 

reflecting the fact that the dielectric surface for the 2D geometry in this project will be 

constrained to lie exclusively along the X-axis.  A more accurate approximation of the 

surface charge accumulation and relaxation, could be obtained by adding the term:  
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                                                    int ˆ( )conductivity erfaceE n tσ− ⋅ Δ                                              (46) 

to the previous equation if the charge on the surface was negative, which represents the 

rate at which electrons will flow through the dielectric, or the dielectric relaxation time.  

However, if this term was included, a more complicated description of the surface charge, 

including emission from the dielectric under appropriate field conditions, would have had 

to be considered.  Therefore, the choice was made to simply consider any charge incident 

on the surface as sticky and not allowed to leave, only recombine. 

 The previously defined equations for the potential at individual grid points can be 

united to solve an entire line of potential values in space simultaneously by casting them 

into a matrix of tridiagonal form.  An example of this matrix for a 1D computational 

region divided into 9N =  potential points, with potential points 0 and 8 being specified 

and one dielectric interface at point 4 is shown below.               

1 1 1 1
2 2 2 2

,1 ,0

,2

,3

, , , , ,4 ,4
2

,5 ,5
2

,6 ,6
2

,7 ,7

2 1 0 0 0 0 0
1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0
0 0 0 0

( )0 0 0 1 2 1 0
( )0 0 0 0 1 2 1

( )0 0 0 0 0 1 2

x x

x

x

x y x y x y x y x x

x x

x x

x x

x
x
x

x

ε ε ε ε

φ φ
φ
φ
φ σ
φ ρ
φ ρ
φ ρ

− − + +− −

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟+ = Δ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ Δ− −⎜ ⎟⎜ ⎟

Δ⎜ ⎟− − ⎜ ⎟
⎜ ⎟⎜ ⎟ Δ +− ⎝ ⎠⎝ ⎠ ,8xφ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

        (47) 

The equation above corresponds to the 1D set-up shown below in Fig 8.  Squares denote 

locations at which the potential is calculated as well as the value of any free charge in the 
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system.  Surface charge is allowed to accumulate on the dielectric surface for this 

example.  X’s indicate where the fluxes between points will be calculated.  

 

Figure 8. Set-up for the DBD device as described by Eq (47). 

 Notice that no free charge is allowed to exist in the dielectric, and that the actual 

numbering of the points goes from 0 to 8, for a total of 9 points, to be consistent with the 

formalism of starting array elements in matrices at zero.  This matrix can be easily solved 

for by using the Thomas algorithm (5:285).  The Thomas algorithm is a direct, single 

pass method of solving a tridiagonal matrix.  The 1D approximation used here is justified 

when the length and width of the electrodes is much greater than the spacing between 

them, the exact value of the potential can then be directly obtained using the Thomas 

algorithm.  This is because the potential at all points perpendicular to the point of interest 

are equivalent in value in this 1D problem, which is why the matrix shown in Eq (47) is 

tridiagonal.  However, in the 2D formalism, an iterative scheme is used to converge upon 

an approximately correct solution for the scalar potential points over the computational 

domain.  This is because the electrodes and free charges are no longer considered to be 
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infinite sheets or over a domain that is much, much bigger than the spacing of the 

electrodes.   

 The iterative method invoked for the 2D representation is basically a 5-point 

averaging method.  The four closest points around the point of interest are averaged to 

find a new value for the fifth point.  The notable difference between the approach used in 

this project and the standard 5-point method is that all the points along a given axis are 

implicitly solved for, using the notional set-up shown below.  This line method should 

theoretically take a little longer for each iteration of the system than the 5-point averaging 

method, but convergence to the set tolerance should happen in half the number of 

iterations (5:285). 

 

Figure 9. Line method used for solving the 2D potential profile. 

 The convergence criterion of the 2D potential solver requires that all potential 

points in the computational domain vary by less than 610−  in value, between their 

previous iteration value and the current value.  This criterion resulted in a substantial 

number of iterations during the first time step but resulted in significant computational 
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time savings for subsequent time step intervals.  This is because the line method 

described above saves and uses the previous potential values from the prior time, and 

uses them as a starting value for each subsequent time step.  If the time step of the system 

is small enough, and the charged particles have not moved very much, then only a few 

iterations are required to find the new potential values.  For large systems, the line 

method described above should give substantial computational time savings over the 5-

point method, but a detailed comparison was not made.   

 Values for the electric field can then be determined by taking the negative of the 

gradient of the potential for every location between points in the computational area. 
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III. Computational Set-up and Potential Solver 

1D Computational Set-up  

 The 1D computational set-up is shown below. 

 

Figure 10. Characteristic set-up geometry for the 1D numeric model. 

 A staggered grid is employed where points labeled by squares are where the 

potential, number density, average electron energy are solved for and tracked, as well as 

values for the associated permittivities, mobilities, and diffusion coefficients.  These 

locations are indicated with a whole number value.  X’s indicate where electric field 

values, particle and energy fluxes, and other half-point values identified as necessary for 

the solution to the three governing equations are evaluated.  Notice that the dielectric 

boundary could extend over many computation points, or simply be removed altogether 

to simulate an exposed electrode.   

 The first step in determining whether or not the numeric code used in this project 

was correct was to validate the potential solver by comparing the results to an analytically 
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derived solution or to other computational results.  Results are shown below for a 1D 

system with no dielectric barriers and no space or surface charge present. 

 

Figure 11. Potential profile for 1D region with no dielectrics or free charge. 

Here a potential of 100 volts was applied to the left electrode, while the right electrode 

was grounded.  The potential solver correctly returns a linear variation in the absence of 

any charge between the electrodes.  Next, a dielectric region was added to determine the 

accuracy of the code, with various dielectric materials present between the electrodes.  

Shown are the results for a region, with a dielectric constant of 4.0, extending from the 

left electrode to midway between the electrodes.  It is easily observed that the value of 

the electric field (negative gradient of the potential profile) outside the dielectric material 

is 4.0 times the value inside.  This reduction in electric field strength comes from the 

polarization inside the dielectric, caused by the alignment of bound charge dipoles, 

counteracting the applied field from the electrodes.  This confirms that the conditions for 

the potential solver with dielectric material present are correct. 
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Figure 12. Potential profile for inserted dielectric and no free charge. 

 With the addition of space and surface charge to the system, the computational 

code for the solver becomes a bit more complicated, making validation under these 

circumstances especially important.  The analytic result for the addition of a uniform 

space charge to a 1D system, with an electrode spacing of L is: 

2

0 0

( )
2 2

space right left space
leftx x L x

L
ρ φ φ ρ

φ φ
ε ε

− −⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
    .                  (48) 

 The boundary conditions at the electrodes are again set to 100 volts and ground, 

for the left and right side respectively.  In this case, the uniformly distributed positive 

charge introduced is 10 310  C/m− , and the number of evaluation points for the solver is 

100N = .  Computational results, shown as X’s, are superimposed on the analytic 

solution, shown as a line, in the figure below.  Greater accuracy could have been obtained 

at the cost of computational time by adding more points to the simulation; but every 
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calculated point was within 10-6 volts of the analytic answer, and this was deemed 

adequate for the project purposes. 

 

Figure 13. Potential profile for no dielectrics and positive free charge. 

 Finally, with the 1D potential solver tested for various dielectric materials and 

space charge, conditions needed to be implemented for handling multiple dielectric 

regions within the computational area and to account for any accumulated surface charge 

on the dielectric surfaces.  The results from these additions are shown below.  Dielectric 

material with a permittivity of 04ε  has been introduced covering both electrodes.  Each 

had a thickness of 2 mm, the boundaries of which can been seen at the X-axis positions of 

2 mm and 8 mm in the figure below.  Surface charge in the amount of 6 22.0 10  C/m−− ⋅  

and 6 22.0 10  C/m−⋅  has been introduced to the left and right dielectric surfaces 

respectively, as well as a uniformly distributed positive charge between the electrodes of 

4 31.5 10  C/m−⋅ .  It should be noted, that Fig 14 below indicates that with enough surface 

charge accumulated on the dielectric surfaces, the electric field inside the active region of 
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a DBD device could be significantly reduced, leading to discharge extinction under DC 

operating conditions. 

By defining: 
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where the φ ’s represent potential values at specified points, σ’s represent the surface 

charge, ρ represents the space charge, the ε’s represent the dielectric constant of the 

material and the D’s and L represent the location of the dielectric surfaces and the 

spacing of the electrodes respectively, the parametric analytic solution of the potential in 

the three regions shown from left to right in Fig 14, can be written: 
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The location of the pertinent variables have been labeled in the figure below.  N in the 

calculation of the numeric solution has again been set to 100.  X’s are the numeric 

solution calculation points which overlay the analytic solution represented by a line.  The 

two results are in excellent agreement, and show that the potential solver in 1D is indeed 

accurate. 

 

Figure 14. Potential profile for inserted dielectrics with free charge. 

 With the results of the potential solver deemed satisfactory, the resultant potential 

values, and thus electric field values can be sequentially introduced to the continuity and 

electron energy equations described in Chapter 2, completing the last of the unknowns in 

the governing equations.  Shown below is the highest level algorithm for describing the 

iterative process by which these equations will be solved for in this project.  Starting with 

appropriate initial conditions, the governing equations can be solved in this iterative 

manner to approximate the temporal evolution of the system.  More results of the 1D 

code will be discussed in Chapter 4.  Serious consideration was given to using a 
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completely implicit method, and solving for all the equations simultaneously at any given 

time step.  However, the time step size required for stability reported by Marchand 

(15:84) for the fully implicit method was less than that of the sequential method.  

Therefore, the sequential method was chosen for both the 1D and 2D geometries.  This 

greatly simplified the numerical complexity, while still allowing for an accurate solution 

in a reasonable amount of time.  

 

Figure 15. Semi-implicit algorithm for solving the governing equations.  

Solve electron 
continuity equation 

Solve ion 
continuity equation 

Solve electron 
energy equation 

Update rate and 
transport coefficient 
values, and continue 
with solution for 
next time step

Solve potential at 
every point in 
system 
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2D Computational Set-up 

 The 2D computational set-up is shown below. 

 

Figure 16. Characteristic set-up geometry for the 2D numeric model. 

 Like the 1D set-up, squares represent whole number values on the grid, indicating 

where potential, number density and electron energy density values are tracked and 

recorded.  X’s are at the half-point values, associated with the fluxes and the electric field 

values between whole point locations.  Migrating the code from a 1D to 2D set-up was 

simplified by assuming a superposition principle for the system, where the 2D set-up 

could be described using its 1D components.  This superposition principle was 

particularly advantageous, given the 1D characteristic of the fluxes in the governing 

equations, as defined in Chapter 2.  Values for the number and energy densities at each 

point were found by solving the tridiagonal governing equations along a particular axis.  
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The changes in the value of the points due to the flux from their neighboring points from 

the previous time step to the current time step were then recorded.  This process was 

repeated for the other axis, using the initial values from the previous time step.  The 

changes due to the X-axis and Y-axis fluxes were then added to the previous value to find 

the new value.  This approach is notionally shown below.   

, , 1 s s
, , Due to flux on X-axis Due to flux on Y-axis

s t s t
x y x yn n n n−= + Δ + Δ  

This piecewise solving of the new values is incidentally the reason for the inclusion of 

the ½ in the source and loss terms of the governing equations as discussed earlier.  This is 

because source and loss terms are generally based on the local number density at the 

previous time step without regard to direction, and are counted twice in the superposition 

scheme implemented.   

 Careful consideration was put into correctly describing the boundary conditions 

for the 2D environment, since the goal of the project was to model a manufacturable, 

aeronautically realistic configuration.  The potential values at the base of the 

computational area were specified to be at relative ground, since they would in practice 

be in contact with a conducting aircraft surface.  Two different regions of variable 

dielectric constant were introduced to allow for more flexibility when modeling different 

construction materials as well as investigating the affects of changing the insulating 

materials between the aircraft surface and the electrodes.  The goal was to correctly 

describe a simple geometry, which was most like what an experimental configuration 

might look like.  This project does not implement code to examine features of the DBD 
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device if the grounded electrode is moved underneath the driven electrode, or to account 

for multiple electrodes as in some experimental set-ups (18:4). 

Charge buildup was allowed to accumulate on the top of dielectric #2, the affects 

of which can significantly influence the potential profile just as it did in the 1D case, as 

seen below.  Fig 17 shows the potential profile, as well as the resulting electric field 

vectors, for a case in which no surface charge is present.  Fig 18 shows the resultant 

potential and field profile for a case in which a negative surface charge is uniformly 

distributed on the dielectric surface directly above the grounded electrode.  The quantity 

of the free charge on the surface of the dielectric in the second figure was not recorded, 

and the MathCAD file used to obtain the results was found to be corrupted.  Therefore, 

the exact surface charge value associated with Fig 18 is not known.  Efforts to rebuild the 

code were done, but with no success.  Completely rewriting the code was deemed too 

time consuming.  The presented results do however serve as an example of the change in 

electric field configuration under charge accumulation conditions.  The driven electrode 

is held at a potential of 100 volts.  Notice the abrupt change in the potential profile at the 

dielectric interface of the Kapton® and air.  This is because of the factor of 4.0 change in 

the permittivity of the two mediums.  The electric field vectors near the region of 

introduced surface charge are also significantly different between the two figures, 

suggesting that the accumulated free charge on the surface of the dielectric can play an 

important role in the dynamics of the system, and therefore the flow control associated 

with various operating parameters. 
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Figure 17. 2D potential profile and associated E field vectors for no free charge. 

 

 

Figure 18. 2D potential profile and associated E field vectors for negative surface charge. 
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 One more potential solver verification was made for the 2D code before 

integrating it with the governing equations to solve the dynamics of the system.  The 

value of the normal component of the displacement ( D⊥ ) at the interface of the dielectric 

and gas of the system should be continuous and approach the analytic solution of: 

dieletric freespaceD D⊥ ⊥=  .                                              (50) 

It should be noted that the individual X-axis and Y-axis component values of the 

displacement can be known for the aforementioned 2D geometry because of the systems 

boundary conditions, and the iterative method used to determine the potential values.  

This allows for the component contribution to the divergence of the displacement by any 

free charge to be found.  If the specified boundaries and spatial discretization of the 

system are adequate, then one would expect that the perpendicular component of the 

displacement vector of the solved system approach or come close to the real value. 

 For this case, no surface charge will be allowed.  Rewriting the Eq (50) above into 

its equivalent dielectric constant and potential components representation along the Y-

axis gives: 

, , 1 , 1 ,( ) ( )x y x y x y x y
d ie le tric freesp a cex x

φ φ φ φ
ε ε− +− −

=
Δ Δ

  ,                       (51) 

since the values of the displacement vector are solved for at locations of 1
2

x± Δ  above 

and below the interface point.  By further manipulating the equation above, it follows 

that: 
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.                                          (52) 

If a nominal values of 1.0 and 4.0freespace dielectricε ε≈   ≈ are specified for the potential solver, 

it follows that both sides of the equation above should evaluate to 4.0 in the limit that the 

grid points become arbitrarily close to the dielectric interface.  The convergence to the 

value 4.0, for a point on the interface, lying halfway between the start and end of the 

grounded electrode for increasing values of N, corresponding to smaller and smaller 

spacing between the potential points, is shown in the table below.  The length and width 

of the computational region is 0.1 meter, defining 0.1/x NΔ ≡ , and the convergence 

tolerance was set to 810− .  Values of the time to convergence for the solver were also 

recorded, as well as their associated computational iteration cost.  Notice that for 

increasing value of N (or more closely spaced calculated potential points, given better 

spatial resolution to the system) the time to convergence is approximately quadrupled for 

every doubling of the resolution.  The potential solution is in fact the most 

computationally intensive portion of the total solution, so the number of calculation 

points was held at 50N =  for the remainder of the project, to allow for results to be 

obtained within a reasonable amount of time. 

Table 1. Computational values for the electric field converging on the analytic solution. 

Value of N 
AboveE⊥ / BelowE⊥

Iterations to Convergence Time to Convergence

50 3.312 ≈ 8,000 <30 sec 
100 3.742 ≈ 32,000 ≈ 1 min 
150 3.840 ≈ 74,000 ≈ 3 min 
200 3.862 ≈ 124,000 ≈ 10 min 
250 3.883 ≈ 190,000 ≈ 45 min 
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The 2D potential solver was further validated by coding its geometry to simulate 

the 1D environment.  This was done by modifying the boundary conditions to make the 

top and bottom of the computational region electrodes.  The side boundary conditions 

remained set to ensure no perpendicular field components, thus reproducing the 1D 

approximations.  The results from the modified 2D code, matched the 1D code perfectly 

for a series of test, including single dielectric, multiple dielectrics, and space and surface 

charge presence, and the analytically derived uniform space charge presence.  A 

representative result of this pseudo 1D code is shown in Fig 19 below.  No free charge 

was present in the system and a dielectric of relative constant 4.0 was inserted from the 

left electrode to midway between the electrodes.  Comparing this 2D result with the 1D 

result shown in Fig 11, shows that they are identical.  The last validation for the 2D code 

was done by using the standard 5-point averaging method in Microsoft Excel under 

identical point geometry to solve for the potential profile without space charge present, 

and comparing the outputs of both programs.  As seen below in Fig 20 for a small portion 

of the results near the electrodes, the comparison matched up perfectly, and helped 

established further confidence in the 2D potential solver. 

 

Figure 19. The 2D potential solver results for a pseudo 1D geometry. 
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Figure 20. 5-point averaging Excel and numeric code results for similar regions. 
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IV. Results and Conclusions 

 The results for various cases using the 1D code are shown and discussed below.  

Electrode potentials are modeled as DC for all the results, even though DBD actuators are 

run in an AC mode.  The DC approximation is sufficient for the time scales investigated.  

The time step used for all the simulations was 1010− seconds.  This is about two orders of 

magnitude smaller than what the dielectric relaxation time dit , defined by: 

    0

( )di e e i it
q n n

ε
μ μ

=
+

                                                 (53) 

was expected to be, but still not so small as to require an inordinate amount of 

computational time per simulation. 

The code was migrated to the 2D environment; but unfortunately inherent 

problems with the boundary conditions in the governing equations, instabilities and errors 

in the code, discovered late in the project, kept the ultimate goal of modeling a realistic 

interaction between the charged species and the neutral particles from being 

accomplished.   

DC Discharge Sheath Test 

 The first characteristic test chosen to see if the electron and ion continuity 

equations returned accurate, expected results when integrated with the potential solver 

and solved sequentially, was to look at the DC discharge sheath that forms during the first 

few nanoseconds of the discharge.  Under DC operating conditions, it should be expected 
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that the electrons, because of their relatively high mobility, as compared to the ions 

would move under any applied field in the system quickly, leaving the resulting plasma 

with a sheath formation.  This sheath of positively charged plasma should remain close to 

the cathode as electrons are forced toward the anode.  This depletion causes a secondary 

electric field, that acts to shield the rest of the plasma from the anode, and it remains in its 

quasi-neutral state.  A sheath region should also develop around the anode, as electrons 

are lost to the surface of the electrode or dielectric coating due to the applied electric field 

and their high thermal velocities.  Results for the 1D system with (Fig’s 21, 22, and 23.) 

and without (Fig’s 24, 25, and 26.) dielectrics as thin coatings on the electrode surfaces 

are shown below.  Charge densities for the electrons and ions are plotted normalized to 

their initial condition, which in these cases was a uniform distribution.  Parameters for 

this test, with Ar gas and the anode held constant at -50 volts, were held constant as 

follows: 

15 3

2 3 2

2 4 2
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e i e
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Figure 21. Potential profile during formation of the DC discharge sheath in a system with 
bare electrodes. 

 

Figure 22. Normalized electron density during formation of the DC discharge sheath in a 
system with bare electrodes. 

 

Figure 23. Normalized ion density during formation of the DC discharge sheath in a 
system with bare electrodes. 
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 The width of the sheath region for the results above is approximately 0.001 m.  

This is consistent with the method used by Poggie to estimate the region width (16:2).  

The characteristic width should be on the order of a Debye length defined as follows: 

1
2

0
2

b e
Debye e

k T
n q

ελ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                                     (54) 

Estimating the electron temperature to be approximately 10,000° K or about 1.0 eV, it 

can be shown that 0.000218Debye mλ =  , indicating that the sheath region observed in 

these calculations is about five Debye lengths wide.  This is of the order that was 

expected, and was therefore deemed a reasonable result. 

  Notice that the charge accumulated on the dielectric surfaces of the figures below 

affects the potential profile and width of the sheath region.  It is also seen that many more 

charged particles are left in the system with dielectric coatings.  This is because of the 

reduced field caused by the accumulation of charge on the dielectrics, and the fact that 

the charges are not allowed to leave the system through the electrode as before.  
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Figure 24. Potential profile during formation of the DC discharge sheath in a system with 
dielectrics coatings. 

 

Figure 25. Normalized electron density during formation of the DC discharge sheath in a 
system with dielectric coatings. 

 

Figure 26. Normalized ion density during formation of the DC discharge sheath in a 
system with dielectric coatings. 
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 The results showed good agreement of the electron density with previous numeric 

calculations as seen in Fig 27.  In Fig 27 the number density is not normalized to the 

initial condition.  The ion densities differ, and this subsequently affects the calculated 

potential profile (12:11). 

 

Figure 27. DC discharge results reported by Hilbun (12:11) 

Ambipolar Diffusion 

 For no applied potential across the electrodes and an initially quasi-neutral plasma 

distribution, the charged particle density near the electrodes should exhibit a rapid 

depletion of the electrons, due to their much higher thermal speed than that of the ions.  

As electrons are lost to the boundaries much more quickly than the ions, an induced 

electric field is formed that tries to bring the system back to its quasi-neutral state by 

balancing the fluxes.  This process of the plasma, where diffusion dominates the first few 

time steps and then the induced field effect starts to limit the process, is seen in Fig’s 28 

and 29 for various time steps below.  The initial conditions for the system were that both 

electrodes be held at ground with dielectric coatings present, and that the plasma be 

distributed sinusoidally as follows: 
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(0)e i
x x

xn n n Sin
L

π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

,                                             (55) 

with n(0) = 1014 /m3.  The transport coefficients were determined using the BOLSIG fits 

with the electron energy held constant at 1.0 eV, in a 1 Torr gas of N2.  Ionization and 

recombination were set to 0.  The plots below in Fig’s 28 and 29 show the relative 

changes in number density as the system transitions from a diffusion to an ambipolar 

particle flux. 

 

Figure 28. Electron density during ambipolar diffusion. 

 

Figure 29. Ion density during ambipolar diffusion. 
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This non-uniform decay shown above is indicative of the induced electric field which 

results from the initial charge separation causes by the fast moving electrons.  It should 

also be noted that the system has not yet reached an equilibrium point for the time steps 

shown.  Fig 29 shows an initial build-up of positively charged ions near the dielectric 

boundaries, and could be indicative of a bottleneck in the numeric method due to an 

unrealistic boundary conditions, or an error in the code.  The source of the apparent 

problem was never clarified.  An immediate rise in the potential profile over the entire 

domain was also noticed as seen below; but then began to settle back to its initial 

condition, as should be expected as the system tries to return to a quasi-neutral state.   

 

Figure 30. Potential profile during ambipolar diffusion. 

 Furthermore, the accumulated flux, calculated by the numeric code at the 

dielectric surfaces (which are in this case one xΔ  thick, and placed directly over both the 

anode and the cathode), should average to zero after the system reaches a steady state 

distribution, as well as be nominally equal to each other as the dynamics of the system 

develop because of the symmetry involved.  Shown in the table below are the results for 
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the surface charge per meter squared at both dielectric surfaces for various times.  Note 

that the values correctly approach zero as time increases. 

Table 2. List of calculated accumulation of surface charge on the dielectric surfaces for 
various times during ambipolar diffusion. 

 Time = 0 sec  Time = 1µs Time = 2µs Time = 3µs Time = 4µs Time = 1ms 

Surface Charge on left 
dielectric 

0 -2.0421e-7 -1.5036e-7 -5.3790e-8 -3.9940e-8 -2.2720e-10 

Surface Charge on right 
dielectric 

0 -2.0406e-7 -1.5025e-7 -5.3680e-8 -3.9830e-8 -1.2580e-10 

 

Constant Characteristic Parameters Comparison 

 With the continuity equations tested, a full implementation with the electron 

energy density equation included, as well as the associated rate and transport fit, was 

tested.  This final test was conducted on the 1D code on a system comprised of 100% N2 

by changing the gas pressure, electrode spacing, and initial charge densities for systems 

that held the parameters below constant, and observing their behavior over time: 

,0

, ,
s

Neutral Neutral

E nP d
N N

  ×   . 

The first term is called the reduced field, the second is the pressure multiplied by the 

electrode spacing, commonly associated with the Paschen curve (which describes the 

breakdown voltage relationship of the system as a function of the pressure of the system 

and the electrode spacing), and the final term is the fractional ionization of the system.  

E  is the electric field, 0,sn  is the initial uniform charge density for both species, d is the 

electrode separation distance, and P the pressure of the neutral gas which is related to 
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NeutralN .  This neutral number density was previously defined in Eq (15).  The 

temperature of the system is set to 300º K.  The driven electrode, the anode in this test 

case is located on the left of the 1D environment.  The potential of the anode was fixed at 

2.5 kV for all cases.  This occurs naturally by holding the reduced field term defined 

above as constant.  The governing equations retain the same form for all cases, but values 

for the neutral number density, the electric field, and the rate and transport coefficients 

change.  The initial rate and transport coefficients remained the same however, because 

the initial value given to the local electron energy was defined as 3.0 eV at every location 

in the system.  These changes resulted in different behaviors being incorrectly observed 

for each simulated scenario in this project, in part because of the limitations associated 

with the rate and transport coefficients as well as the spatial discretization, which 

changed as the electrode separation changed.  In reality, the results should have been 

identical. 

Table 3. Values used for comparison between constant characteristic systems. 

Pressure (in Torr) Electrode Separation (in m) Charge Density (in m-3) Potential (in V) 

P=1 d=.1 ns,0=1015 V=2500  

P=10 d=.01 ns,0=1016 V=2500  

P=100 d=.001 ns,0=1017 V=2500  

P=350 d=2.857x10-4 ns,0=3.5x1017 V=2500  

P=760 d=1.316x10-4 ns,0=7.6x1017 V=2500  

 
 

The goal of this test was to compare these different conditions for various times, 

and report the resultant charge and energy densities; as well as the relative dynamics of 
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the system.  During a discussion with Bailey (1) it was discovered that using a 

transformation of parameters approach, it was possible to fully describe the results of the 

simulation, for any combination of the characteristic parameters listed above, given a 

solution under any other conditions.  This would have been advantageous when 

comparing any previously published results, as well as analytic solutions if available. 

However, as seen in the figures below, unstable behavior was observed.  The charge 

densities of the 100P =  Torr and greater cases completely disappeared during the first 

microsecond of operation.  For simulation run times on the order of nanoseconds, 

unpredictable instabilities at these higher pressures were observed, but not reported on 

here.  These instabilities were thought to arise from the values returned by the electron 

energy equation solution.  These energy density values exhibited extreme oscillatory 

behavior, and negative values were sometimes generated.  The location of the problems 

appeared to occur at the boundaries of the system, but was found to occur at other 

locations as well for longer run times.  Therefore, the boundary conditions of the system 

were determined to not be the cause of the instability.  A good deal of work went into 

isolating the problems with the energy equation; but it was eventually eliminated from 

the program, and replaced by another method for determining the local rate and transport 

values as discussed in the next section. 

  In Fig 31 below, it is seen that the electron density behaves as discussed in the 

DC discharge sheath section for the 10 Torr case near the electrodes; but exhibits 

instabilities which eventually return to a steady state value, in the central portion of the 

discharge as seen in Fig 32 and Fig 33.  An initial build-up of electrons near the anode in 
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the 1 Torr case in Fig 31, not present at later times, is seen and gives suspicion of an 

underlying numeric error.  The results in Fig 31 look to be very similar to a steady state 

solution during the first microsecond of operation, and should have been investigated for 

earlier times.  A magnified view (Fig 33) over various times for the instabilities shown in 

Fig 32 is presented. 

 

Figure 31. Charge distribution after 1 sμ  for constant characteristics comparison. 

 

Figure 32. Charge distribution after 3 sμ  for constant characteristics comparison. 
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Figure 33. Magnified view of the instabilities near the anode encountered at P=10 Torr. 

1D Fixes 

 Eventually, the erratic behavior of the numeric code was linked to the values of 

the local average electron energy which are used to determine the rate and transport 

coefficients as previously described.  The setting of minimum and maximum values of 

these energies in an attempt to keep the results within the range of goodness for the fits, 

masked a problem with the solution of the energy equation.  Negative numbers, which 

began appearing at the boundaries and sometimes at apparently random locations 

throughout the computational domain, created serious problems for the numeric code.  

Therefore the energy equation was eliminated, and replaced by the reduced field 

representation for determining the rate and transport coefficients.  This reduced field 

representation, previously defined as: 

Reduced Field
Neutral

E
N

≡ , 
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is a characteristic of the conditions in the plasma, and is related to the local average 

electron energy.  Instead of having to rewrite the rate and transport coefficient fit portion 

of the numeric code, the BOLSIG solver was once again used to relate the reduced field 

to the average local electron energy as seen below.  A fit of this relationship was 

determined, and used in conjunction with the previous fits to assign new coefficients to 

all points in the system as seen in Fig 34 below.  This approach also had difficulties 

associated with it, and the range over which the coefficients could be accurately 

described was further reduced because of the goodness of the fits.  This limited the range 

of input parameters, such as electrode potential values and pressures to a specific range.  

Unfortunately, this range did not include the specified parameter values for the constant 

characteristics comparison test discussed above.  The initial guess of 3.0 eV for the 

average electron energy for this test case reported above was found to be in error, and 

was most likely the main contributor to the erratic behavior observed.  This value did not 

allow for accurate initial rate and transport coefficients and limited the ability of the 

simulation to produce self sustaining ionization.  The correct value for the initial average 

local electron energy value should have been approximately 13 eV, as estimated using the 

reduced field characteristic.  This energy value is well outside the range for which the 

rate and transport fits were calculated, and presents a significant limitation to the 

suitability of this numeric code for modeling realistic systems.  Unfortunately, this 

oversight was not found until very late in the project, and time constraints did not allow 

for it to be corrected.  New BOLSIG fits over a wider range of electron energies or direct 

reduced field value fits introduced into the code may take care of this limitation in the 

future. 
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Figure 34. BOLSIG fits for relating the reduced field to the local average electron energy. 

 With the electron energy equation eliminated and the conditions under which the 

code could be run more definitively specified, it was found that the source of the negative 

energy values was actually from the solution of the electron continuity equation.  Under 

certain time step and computational cell spacing conditions, it was found that the solution 

to the governing equations, especially the electron continuity equation, gave inaccurate 

results at the boundaries because of the interaction of the thermal velocity used to 

describe the boundary flux, and the local field and mobility coefficient.  Special care had 

to be taken to not let the rate at which the electrons moved through the system, exceed 

what the spatial discretization of the model could accurately handle.  This was done by 

carefully choosing the distance between cells and the time step.  By using the expected 

thermal velocities of the electrons under the conditions tested, the cell spacing was 

adjusted so that the electrons were not allowed to move more than ¼ of a cell during each 

time step.  As seen in Eq (56) below (which is Eq (18) rewritten for clarity) the method 

used to solve the governing equations, could potentially overstep its bounds, leading to an 
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erroneous negative result for the new time.  This occurred when the field driven flux and 

the thermal flux were oppositely directed. 

( ), , , , 1s t s t s t s t
adjacent Scharfetter Gummel thermal adjacent

tn S L n
x

−
−

Δ
= Γ + Γ + − +

Δ
                       (56) 

 Various instabilities were still found after all these fixes had been implemented, 

and no correlation between when or where they would present themselves was found.  

This made it difficult to focus in on any other areas to fix problems.  No further 1D 

results where obtained.   

2D Results and Problems 

 The 1D and 2D codes were developed simultaneously, and therefore problems 

found in one had to be addressed in the other.  Obtaining even preliminary results from 

the 2D code proved difficult because of a lack of suitable initial conditions.  The plan was 

to introduce a Gaussian distribution of charge as seen in Fig 35 below, disallow any 

charge buildup on the dielectric surface, and run the simulation until a steady state 

solution was reached.  The exposed driven electrode can be seen towards the bottom left 

of the domain, while the grounded electrode is buried in the dielectric material.  The peak 

charge density seen below is about 15 310 m− , which falls off rapidly to zero in the outer 

regions of the computational area. 
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Figure 35. Gaussian used as an initial condition for charge density distribution. 

 Due to the previously described difficulties and problems finding erratically 

behaving cells in the much larger 2D geometry, the convergence criteria was never met, 

and therefore no suitable initial conditions could be implemented.  Definite changes in 

the density profile, charge accumulation, and evolution of the potential profile over time 

were observed and looked nominally like one would expect, as seen below.  Here the 

dimensions of the 2D system reflect a physically realistic set-up, with the base of the 

computational area grounded, the driven electrode in the bottom left of the region is held 

at 2.5kV, and the grounded electrode is towards the bottom right.  Rate and transport 

coefficients are determined using the reduced field representation fix from the 1D 

environment, and the initial density distribution is the Gaussian from Fig 35 above.  The 

100% 2N background gas pressure is 1 Torr, and the driven electrode is exposed.  

Secondary emission of electrons due to electrode impact by ions is turned on, but not 

expected for this configuration since the driven electrode is held at a positive potential.  

The contour lines for the resultant potential profile over time are shown in Fig 36, as well 

as the evolution from the initial Gaussian distribution of the electron number density in 
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Fig 37.  Notice the erratic behavior of the density on the left side of the computational 

region around the driven electrode in Fig 37.  A suitable explanation for this behavior 

was not found.  Also notice the charge buildup on the dielectric surface in Fig 38.  It 

progressed from an initial condition of zero everywhere, and shows the greatest buildup 

in regions closest to the electrodes.  Overlaid is the representative initial electron density 

distribution at the points directly above the dielectric surface.  The shape of which seems 

to correspond to the calculated charge accumulation, but notice the erratic behavior of the 

charge density to the left of the electrode.  The value of the reported charge accumulation 

points can be estimated by considering the initial conditions of the electron thermal 

velocity, the boundary conditions, and the electron number density.  This estimate 

showed good agreement to the calculated value, so the charge accumulation was 

considered in line with what should be expected.  The charge buildup is thought to 

migrate down the length of the buried electrode as time progresses, and can narrowly be 

seen upon close inspection and interpretation of the potential profile plots in Fig 36 

below.   

 No confidence was placed in these results however because of the difficulties in 

reaching a steady state solution associated with the 2D code that were encountered.  

These problems were indicative of either program coding errors or basic physical model 

assumptions and techniques that need to be worked out before any more work is done. 
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Figure 36. Plots of the 2D potential profile progression for various times.  Changes in the 
profile are seen as charge moves in the system and accumulates on the dielectric surface. 
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Figure 37. Electron number density for various times after initial Gaussian.  Instabilities 
around the exposed electrode area are seen. 
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Figure 38. Charge buildup on the dielectric surface at end of simulation.  The region 
between 7 and 17 units on the axis is the location of the exposed electrode.  Therefore, no 
charge was allowed to accumulate there. 
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V.  Summary of Work and Recommendations for Future Efforts 

Summary of Work 

 This project developed three governing equations used to characterize the 

macroscopic properties of the plasma dynamics of a 1D and 2D plasma actuator set-up.  

Methods for determining the rate and transport coefficients, solving for the potential 

profile of the system, and integrating all the pieces into a sequential solving algorithm 

were presented.  Preliminary results were found for the DC discharge sheath model, the 

ambipolar diffusion case, and by holding some characteristic parameters of the system 

constant.  The main goal of developing an accurate predictor tool, in good agreement to 

the experimentally observed flow control and boundary layer reattachment forces, for 

determining the momentum transfer to the neutral air flow of a system by the moving 

plasma, was not accomplished.  However an accurate potential solver in both 1D and 2D 

was shown and that represents a suitable achievement. 

Recommendations for Future Efforts 

 Various improvements can be implemented to the current code in the future.  

Changes to the dimensions of the computational area should be made in order to save 

computational time in regions of low activity, as well as allowing for the simulation of 

more realistic rectangular like regions, with many electrodes present (as seen from 

experimental results in Fig 39 below), and a higher resolution view of the progression of 

the plasma close to the boundary surface.  The placement of grounded and driven 

electrodes should be examined, and allowed to overlap to study if any benefit can be 
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obtained through this geometry.  Grid spacing should be allowed to vary from place to 

place within the domain, to more accurately model the interfaces and the geometry of the 

electrodes in the 2D case.  Better characterization of the dielectric surface where charge 

build-up is allowed to either flow through the dielectric material due to the applied field 

or jump-off to contribute to the ionization under reversing field conditions should be 

looked at.  The boundary conditions, and the cause of the instabilities present in the 1D 

and 2D simulations described above also need more examination. 

 

Figure 39. Induction of flow over electrodes with various potentials phasing (17:2125). 

 The most computationally intensive portion of the program is the potential solver, 

and it would be very interesting to look at other methods for solving the potential, 

especially in 2D.  By looking at the traditional 5-point method it can be seen that the full 

matrix for solving the system implicitly has a pentadiagonal like symmetry as seen below 

in Fig 40.  The uppermost and lowermost diagonals vary in their position depending on 

the size of the array, but the center tridiagonal feature remains.  The figure below shows 

the basic set-up for a 6X6 grid where the bottom row is grounded, and the sides and top 

are limited by boundary conditions to make the perpendicular component of the electric 



 

 68    

field equal to zero.  As before, this condition is physically unrealistic, except in cases 

where the edges are very far away from the electrodes and active region; but serves to 

keep all charged particles inside the system.  No dielectrics or electrodes have been 

introduced in this set-up.  A brief search of numerical matrix techniques did not reveal a 

unique direct (implicit) method for solving this pentadiagonal matrix.  It could however 

be solved using a computationally intensive Gaussian elimination scheme.  It would be 

interesting to actually compare the time for convergence of the iterative line method used 

in this project and the time for a solution to the pentadiagonal system using a direct 

method, or other type of iterative technique. 
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 Given the promise of DBD device technology to radically alter the aviation world 

of today and the specific benefits associated with its development to the United States Air 

Force, should compels the aerospace industry and academic community to seriously look 

at the technology as a way of preserving America’s air supremacy in the 21st century.  
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